فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

شاهمرادی عبید

اطلاعات دوره: 
  • سال: 

    0
  • دوره: 

    1
  • شماره: 

    3
  • صفحات: 

    35-47
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1
  • دانلود: 

    0
چکیده: 

با گسترش شبکه های کامپیوتری و رشد روزافزون کاربردهای مبتنی بر اینترنت اشیاء (IoT)، شبکه های حسگر بی سیم (WSN)، و شبکه های پویا مانند MANET، مساله بهینه سازی مسیریابی به یکی از چالش های بنیادین در علوم رایانه و مهندسی شبکه تبدیل شده است. الگوریتم های سنتی همچون دایکسترا و بلمن-فورد اگرچه در محیط های پایدار کارایی نسبی دارند، اما به دلیل محدودیت در سازگاری با تغییرات دینامیک و چندهدفه بودن مسائل جدید، پاسخگوی نیازهای محیط های مدرن نیستند. در این راستا، هدف اصلی این مقاله، بررسی جامع نقش و کارایی الگوریتم فاخته (Cuckoo Optimization Algorithm - COA) به عنوان یک الگوریتم فراابتکاری نوین در بهینه سازی مسیریابی شبکه های کامپیوتری است. الگوریتم فاخته با الهام از رفتار تولیدمثل انگلی پرنده فاخته و سازوکار پرش های Lévy، به عنوان رویکردی ساده اما توانمند به ویژه برای حل مسائل غیرخطی، چندهدفه و پویا معرفی شده است. در این مقاله، ضمن تبیین ساختار، مراحل اجرایی و مزایا و معایب الگوریتم فاخته نسبت به روش های دیگر (مانند PSO، GA و ACO)، به مرور مطالعات میدانی و شبیه سازی های انجام شده در حوزه های WSN، MANET، SDN و IoT پرداخته شده است. نتایج پژوهش های گذشته نشان می دهد استفاده از COA سبب کاهش محسوس مصرف انرژی، بهبود نرخ تحویل بسته و افزایش طول عمر شبکه نسبت به الگوریتم های جایگزین شده است. همچنین، کاربردهای عملی COA در محیط های پویا و دارای تغییرات سریع توپولوژی، قابلیت ها و برتری های بیشتری نسبت به رقبای خود آشکار ساخته است. در ادامه، مقاله با تمرکز بر نتایج مقایسه ای میان COA و دیگر الگوریتم های فراابتکاری، نشان می دهد که الگوریتم فاخته به سبب سادگی ساختار، سرعت همگرایی بالا و توان جستجوی جامع تر، برای کاربردهای شبکه ای خصوصاً در سناریوهای داده محور و نوظهور، انتخاب مناسبی است. با این حال، چالش هایی نظیر نیاز به تنظیم بهینه پارامترها، تطبیق محدود با مسائل گسسته و عدم وجود استانداردسازی جامع نیز شناسایی شده است. بر همین اساس، پیشنهادهای پژوهشی آینده، بهره گیری از ترکیب COA با سایر الگوریتم ها، توسعه نسخه های یادگیری محور و به کارگیری آن در محیط های واقعی و بزرگ مقیاس را مورد تاکید قرار می دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Yassami Mohammad | Ashtari Payam

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    6
  • شماره: 

    2
  • صفحات: 

    295-318
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    53
  • دانلود: 

    0
چکیده: 

Numerous Algorithms have recently been invented with varying strengths and weaknesses, none of which is the best for all cases. Herein, a Hybrid Optimization method known as a PSOHHO Optimization Algorithm is presented. There are two methods for combining Algorithms: parallel and sequential. We adopted the parallel method and optimized the Algorithm's performance. We cover the weaknesses of one Algorithm with the strengths of another Algorithm using a new method of combination. In this method, using several formulas, the top populations are exchanged between the two Algorithms, and a new population is created. With this ability, the strengths of an Algorithm can be used to compensate for the weaknesses of the other Algorithm. In this method, no changes are made to the Algorithms. The main goal is to use existing Algorithms. This method aims to attain the optimal solution in the shortest time possible. Two Algorithms of particle swarm Optimization (PSO) and Harris Hawks Optimization (HHO) were used to present this method and five truss samples were considered to confirm the performance of this method. Based on the results, this method has rapid convergence speed and acceptable results compared to the other methods. It also yields better results than its basic Algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 53

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

JAFARIAN A. | Farnad B.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    11
  • شماره: 

    2
  • صفحات: 

    143-156
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    169
  • دانلود: 

    0
چکیده: 

Particle swarm Optimization (PSO) is one of the practical metaheuristic Algorithms which is applied for numerical global Optimization. It bene ts from the nature inspired swarm intelligence, but it su ers from a local optima problem. Recently, another nature inspired metaheuristic called Symbiotic Organisms Search (SOS) is proposed, which doesn't have any parameters to set at start. In this paper, the PSO and SOS Algorithms are combined to produce a new Hybrid metaheuristic Algorithm for the global Optimization problem, called PSOS. In this Algorithm, a minimum number of the parameters are applied which prevent the trapping in local solutions and increase the success rate, and also the SOS interaction phases are modi ed. The proposed Algorithm consists of the PSO and the SOS phases. The PSO phase gets the experiences for each appropriate solution and checks the neighbors for a better solution, and the SOS phase bene ts from the gained experiences and performs symbiotic interaction update phases. Extensive experimental results showed that the PSOS outperforms both the PSO and SOS Algorithms in terms of the convergence and success rates.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 169

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

Doraghinejad Mohammad | NEZAMABADIPOUR HOSSEIN | Hashempour Sadeghian Armindokht | Maghfoori Malihe

اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    4
تعامل: 
  • بازدید: 

    163
  • دانلود: 

    0
چکیده: 

NOWADAYS, UTILIZING HEURISTIC AlgorithmS IS HIGHLY APPRECIATED IN SOLVING Optimization PROBLEMS. THE FUNDAMENTAL OF THESE AlgorithmS ARE INSPIRED BY NATURE. THE GRAVITATIONAL SEARCH Algorithm (GSA) IS A NOVEL HEURISTIC SEARCH Algorithm WHICH IS INVENTED BY USING LAW OF GRAVITY AND MASS INTERACTIONS. IN THIS PAPER, A NEW OPERATOR IS PRESENTED WHICH IS CALLED "THE BLACK HOLE". THIS OPERATOR IS INSPIRED BY THE CONCEPT OF AN ASTRONOMY PHENOMENON. BY ADDING THE BLACK HOLE OPERATOR, THE EXPLOITATION OF THE GSA IS IMPROVED. THE PROPOSED Algorithm IS EVALUATED BY SEVEN STANDARD UNIMODAL BENCHMARKS. THE RESULTS OBTAINED DEMONSTRATE BETTER PERFORMANCE OF THE PROPOSED Algorithm IN COMPARISON WITH THOSE OF THE STANDARD GSA AND OTHER VERSION OF GSA WHICH IS EQUIPPED WITH THE DISRUPTION OPERATOR.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 163

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

SAHAB M.G. | TOROPOV V.V. | ASHOUR A.F.

اطلاعات دوره: 
  • سال: 

    2004
  • دوره: 

    5
  • شماره: 

    3-4
  • صفحات: 

    121-143
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    405
  • دانلود: 

    0
چکیده: 

This paper presents a Hybrid Optimization Algorithm based on a modified genetic Algorithm (GA). The Algorithm includes two stages. In the first stage, a global search is carried out over the design search space using a modified GA. In the second stage, a local search is executed that is based on GA solution using a discretized form of Hooke and Jeeves method. The modifications on basic GA includes dynamically changing the population size Throughout the GA process, utilizing variable penalty multiplier and the use of a square root form of the penalty function in constraint handling. The Hybrid Algorithm and the modifications to the basic GA are examined on the design Optimization of a well-known test problem (10 bar truss). The effect of different parameters and techniques of handling GA operators on the performance of the proposed Algorithm is investigated. The Hybrid Algorithm is employed for the design Optimization of a reinforced concrete flat slab building  and the results are compared with those of using the GA only.      

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 405

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 2
نویسندگان: 

FASTRICH BJORN | WINKER PETER

اطلاعات دوره: 
  • سال: 

    2009
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    228
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 228

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

ASGHARI K. | SAFARI MAMAGHANI A. | MAHMOUDI F.

نشریه: 

VIRTUAL

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    1
  • شماره: 

    1
  • صفحات: 

    25-37
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    204
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 204

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Rafiee A. | Moradi P. | Ghaderzadeh A.

اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    51
  • شماره: 

    4
  • صفحات: 

    443-454
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    187
  • دانلود: 

    37
چکیده: 

Multi-label classification aims at assigning more than one label to each instance. Many real-world multi-label classification tasks are high dimensional, leading to reduced performance of traditional classifiers. Feature selection is a common approach to tackle this issue by choosing prominent features. Multi-label feature selection is an NP-hard approach, and so far, some swarm intelligence-based strategies and have been proposed to find a near optimal solution within a reasonable time. In this paper, a Hybrid intelligence Algorithm based on the binary Algorithm of particle swarm Optimization and a novel local search strategy has been proposed to select a set of prominent features. To this aim, features are divided into two categories based on the extension rate and the relationship between the output and the local search strategy to increase the convergence speed. The first group features have more similarity to class and less similarity to other features, and the second is redundant and less relevant features. Accordingly, a local operator is added to the particle swarm Optimization Algorithm to reduce redundant features and keep relevant ones among each solution. The aim of this operator leads to enhance the convergence speed of the proposed Algorithm compared to other Algorithms presented in this field. Evaluation of the proposed solution and the proposed statistical test shows that the proposed approach improves different classification criteria of multi-label classification and outperforms other methods in most cases. Also in cases where achieving higher accuracy is more important than time, it is more appropriate to use this method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 187

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 37 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

SARBAZFARD SOSAN | JAFARIAN AHMAD

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    8
  • شماره: 

    2 (28)
  • صفحات: 

    21-38
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    257
  • دانلود: 

    0
چکیده: 

In this paper, a new and an effective combination of two metaheuristic Algorithms, namely Firefly Algorithm and the Differential evolution, has been proposed. This Hybridization called as HFADE, consists of two phases of Differential Evolution (DE) and Firefly Algorithm (FA). Firefly Algorithm is the nature-inspired Algorithm which has its roots in the light intensity attraction process of firefly in the nature. Differential evolution is an Evolutionary Algorithm that uses the evolutionary operators like selection, recombination and mutation. FA and DE together are effective and powerful Algorithms but FA Algorithm depends on random directions for search which led into retardation in finding the best solution and DE needs more iteration to find proper solution. As a result, this proposed method has been designed to cover each Algorithm deficiencies so as to make them more suitable for Optimization in real world domain. To obtain the required results, the experiment on a set of benchmark functions was performed and findings showed that HFADE is a more preferable and effective method in solving the high-dimensional functions.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 257

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KAVEH A. | NASR ELAHI A.

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    14
  • شماره: 

    2
  • صفحات: 

    201-223
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    393
  • دانلود: 

    0
چکیده: 

In this paper, a new Hybrid Particle Swarm Optimization (PSO) and Harmony Search (HS) Algorithm, denoted by PSOHS is presented. This Hybrid Algorithm is designed to improve the efficiency of the PSO and remove some of the disadvantages which reduce the capability of the PSO. The main problem of the PSO is the lack of balance between exploration and exploitation of the Algorithm. Another problem is how to handle the violating particles from feasible search space without reduction in the performance of the Algorithm. The problem of unbalanced exploration and exploitation is solved using linear varying inertia weight. The second problem is solved in some other Algorithms via reproduction of the violating particles using the HS Algorithm. In this paper, these two approaches are combined to achieve a more efficient Algorithm for engineering design problems. To show the higher capability of this approach compared to other works, several benchmark engineering examples, which have been considered previously and solved utilizing a variety of Optimization Algorithms, is solved by the present Hybrid Algorithm. Results illustrate a desirable performance of the PSOHS in both obtaining lower weight and having a higher convergence rate.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 393

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button